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Outline for Today
● What is a Function?

● It’s more nuanced than you might expect.
● Domains and Codomains

● Where functions start, and where functions end.
● Defining a Function

● Expressing transformations compactly.
● Special Classes of Functions

● Useful types of functions you’ll encounter IRL.
● Proofs on First-Order Definitions

● A key skill.



  

What is a function?



  

Motivating Example 1: Database Sharding
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Motivating Example 2: Data Clustering
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What’s In Common?
● We have a fixed, known set of possible inputs.

● In our examples: user names and 2D data points
● We have a fixed, known set of possible outputs.

● In our examples: database shards and cluster 
labels.

● Each input is assigned an output.
● Some outputs might be assigned multiple inputs.
● Some outputs might be assigned no inputs.



  

High-Level Intuition:

A function is an object f that takes in 
exactly one input x and produces exactly 

one output f(x).

(This is not definition. It’s just to
help you build and intuition.)

fx

 

f(x)
 
 



  

Domains and Codomains
● Every function f has two sets associated with it: its 

domain and its codomain.
● A function f can only be applied to elements of its 

domain. For any x in the domain, f(x) belongs to the 
codomain.

Domain Codomain

The function 
must be defined 

for every element 
of the domain.

The output of the 
function must 

always be in the 
codomain, but 

not all elements 
of the codomain 

must be 
produced as 

outputs.



  

Domains and Codomains
● Every function f has two sets associated with it: its 

domain and its codomain.
● A function f can only be applied to elements of its 

domain. For any x in the domain, f(x) belongs to the 
codomain.

double absoluteValueOf(double x) {
    if (x >= 0) {
        return x;
    } else {
        return -x;
    }
}

The domain of this function 
is ℝ. Any real number can be 

provided as input.

The codomain of this function is 
ℝ. Everything produced is a real 
number, but not all real numbers 

can be produced.



  

Domains and Codomains
● If f is a function whose domain is A and whose 

codomain is B, we write f : A → B.
● Think of this like a “function prototype” in C++.

f : A → B

Argument
type

Return
type

Function
name

B f(A arg);

Argument
type

Return
type

Function
name



  

Domains and Codomains
● If f is a function whose domain is A and whose 

codomain is B, we write f : A → B.
● Think of this like a “function prototype” in C++.

f : A → B

Domain Codomain

Function
name

B f(A arg);

DomainCodomain

Function
name



  

Some Observations
● Usually, when working with functions, you pick the 

domain and codomain before defining the rule for the 
function.
● Think programming: you usually know what types of things 

you’re working with before you know how they work.
● In mathematics, all functions take in exactly one 

argument: an element of the domain.
● If you’re clever, you can get two or more arguments to a function 

while still obeying this rule. Chat with me after class to learn 
more!

● In mathematics, functions are deterministic and can’t 
behave randomly.
● If you’re clever, you can get functions that kinda sorta ish look 

random. Chat with me after class to learn more!



  

The Official Rules for Functions
● Formally speaking, we say that f : A → B if the following two 

rules hold.
● First, f must be obey its domain/codomain rules:

∀a ∈ A. ∃b ∈ B. f(a) = b
(“Every input in A maps to some output in B.”)

● Second, f must be deterministic:
∀a₁ ∈ A. ∀a₂ ∈ A. (a₁ = a₂ → f(a₁) = f(a₂))

(“Equal inputs produce equal outputs.”)
● If you’re ever curious about whether something is a 

function, look back at these rules and check! For example:
● Can a function have an empty domain?
● Can a function have an empty codomain?



  

Defining Functions



  

Defining Functions
● To define a function, you need to

● specify the domain,
● specify the codomain, and
● give a rule used to evaluate the function.

● All three pieces are necessary.
● We need to domain to know what the function can be 

applied to.
● We need to codomain to know what the output space is.
● We need the rule to be able to evaluate the function.

● There are many ways to do this. Let’s go over a few 
examples.



  

White-Tailed
Kite

Anna’s
Hummingbird

Functions can be defined as a picture.
Draw the domain and codomain explicitly.

Then, add arrows to show the outputs.

Red-Shouldered
Hawk



  

f : ℤ → ℤ, where
 

f(x) = x2 + 3x – 15

Functions can be defined as a rule.
Be sure to explicitly state what the

domain and codomain are!



  

Some rules are given piecewise. We select which
rule to apply based on the conditions on the right.

(Just make sure at least one condition applies and that
all applicable conditions give the same result!)

f (n)={ n if n≥0
−n if n≤0

f : ℤ → ℕ, where



  

Some Nuances



  Is this a function from ℝ to ℝ?

f (x) = x+2
x+1

Answer at

https://cs103.stanford.edu/pollev

f : ℝ → ℝ, where

https://cs103.stanford.edu/pollev


  Is this a function from ℝ to ℝ?

This expression isn’t 
defined when x = -1, so f 
isn’t defined over its full 

domain. We therefore 
don’t consider it to be a 

function.

f (x) = x+2
x+1

Answer at

https://cs103.stanford.edu/pollev

f : ℝ → ℝ, where

https://cs103.stanford.edu/pollev


  Is this a function from ℕ to ℝ?

f (x) = x+2
x+1

Answer at

https://cs103.stanford.edu/pollev

f : ℕ → ℝ, where

https://cs103.stanford.edu/pollev


  Is this a function from ℕ to ℝ?

Yep, it’s a function! Every 
natural number maps to 

some real number.

f (x) = x+2
x+1

Answer at

https://cs103.stanford.edu/pollev

f : ℕ → ℝ, where

https://cs103.stanford.edu/pollev


  

Time-Out for Announcements!



  

Problem Set One Solutions
● We’ve just posted solutions to Problem Set One. They’re 

linked from the main PS1 page.
● We recommend you read over our solution set before 

finishing PS2.
● You’ll get to see examples of polished written proofs.
● Each problem has a “Why We Asked This Question” section, 

which gives some context.
● We may have solved the problem differently than you, and 

this will give you more perspectives to use.
● We’ll aim to have PS1 graded and returned Wednesday 

morning / afternoon.
● Please tag pages when submitting PDFs to Gradescope.



  

Essential Action Items
● Review your feedback when it comes available.

● Don’t just look at the raw score. Make sure you really, 
truly understand where you need to improve.

● Read the solutions in depth.
● Make sure you understand what we were asking, why we 

asked it, and what we wanted you to take away.
● (Especially for Q8, Q10) Look at our solutions and see if 

there’s any neat lessons you can draw from them.
● Come to us with questions.

● Anything you’re not sure about? That’s what we’re here 
for! Come to office hours, ask questions on EdStem, etc.



  

Other Things to Have 
On Your Radar

● Left-handed desk form
● due Monday of next week

● Attendance opt-out form
● available next week, due Friday

● Regret Clause Form
● due Tuesday, 1:00 PM



  

Back to CS103!



  

Special Types of Functions



  

Conventions

IntuitionsDe
fin

iti
on

sWhat terms are 
used in this proof? 

What do they 
formally mean?

What does this 
theorem mean? 
Why, intuitively, 

should it be true?

What is the standard 
format for writing a proof? 
What are the techniques 

for doing so?



  



  



  

Undoing by Doing Again
● Some operations invert themselves. For example:

● Flipping a switch twice is the same as not flipping it at all.
● In first-order logic, ¬¬A is equivalent to A.
● In algebra, -(-x) = x.
● In set theory, (A Δ B) Δ B = A. (Yes, really!)

● Operations with these properties are surprisingly 
useful in CS theory and come up in a bunch of 
contexts.
● Storing compressed approximations of sets (XOR filters).
● Building encryption systems (symmetric block ciphers).
● Transmitting a large file to multiple receivers (fountain 

codes).



  

Involutions
● A function f : A → A from a set back to itself is 

called an involution when the following first-
order logic statement is true about f:

∀x ∈ A. f(f(x)) = x.
(“Applying f twice is equivalent to not 

applying f at all.”)
● Involutions have lots of interesting properties. 

Let’s explore them and see what we can find.

This is the formal
definition. Use it

in proofs.

This is just an
intuition. Don’t use

it in proofs.



  

Involutions
● Which of the following are involutions?

● f : ℤ → ℤ defined as f(x) = x.
● g : ℤ → ℤ defined as g(x) = -x.
● h : ℝ → ℝ defined as h(x) = ¹/ₓ.
● p : ℕ → ℕ defined as follows:

A function f : A → A is called an involution if the following
first-order logic statement is true about f:

  

∀x ∈ A. f(f(x)) = x.

p (n) = {n+1 if n  is even
n−1 if n  is odd Answer at

https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev
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Involutions
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Involutions, Visually

A function f : A → A is called an involution if the following
first-order logic statement is true about f:

  

∀x ∈ A. f(f(x)) = x.

✬

+

☞

≈

⬠

✬

+

☞

≈

⬠



  

Involutions, Visually
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Proofs on Involutions



  

Theorem: The function f : ℤ → ℤ defined as

   
is an involution.

Proof: Pick some n ∈ ℕ. We need to show that f(f(n)) = n. To
do so, we consider two cases.
Case 1: n is even. Then f(n) = n+1, which is odd. This

means that f(f(n)) = f(n+1) = (n+1) – 1 = n.
Case 2: n is odd. Then f(n) = n – 1, which is even. Then

we see that f(f(n)) = f(n – 1) = (n – 1) + 1 = n.
In either case, we see that f(f(n)) = n, which is what we 
need to show. ■

f (n) = {n+1 if n  is even
n−1 if n  is odd
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What does it mean for f to be an 
involution?

∀n ∈ ℤ. f(f(n)) = n.

Therefore, we’ll have the reader 
pick some n ∈ ℕ, then argue that 
f(f(n)) = n.
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f (n) = {n+1 if n  is even
n−1 if n  is odd
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This proof contains no
first-order logic syntax

(quantifiers, connectives, etc.).
It’s written in plain English,

just as usual.
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To prove that
this is true…

∀x. A
Have the reader pick an

arbitrary x. We then prove A is
true for that choice of x.
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Theorem: The function f : ℕ → ℕ defined as f(n) = n2 is not
an involution.

Proof: We need to show that there is some n ∈ ℕ where
f(f(n)) ≠ n.
Pick n = 2. Then
       f (f(n)) =  f(f(2))
        =  f(4)
        =  16,
which means that f(f(n)) ≠ n, as required. ■
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To prove that
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¬A

Have the reader pick an
arbitrary x. We then prove A is
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Simplify the negation, then
consult this table on the result.



  

To prove that
this is true…

∀x. A

∃x. A

¬A

Have the reader pick an
arbitrary x. We then prove A is

true for that choice of x.
Find an x where A is true.

Then prove that A is true for
that specific choice of x.

Simplify the negation, then
consult this table on the result.



  

Another Class of Functions



  

Mercury

Venus

Earth

Mars

Jupiter

Saturn

Uranus

Neptune

♀
☿

♂
♃
♄
♅
♆

♀

Pluto



  

Mercury

Venus

Earth

Mars

Jupiter

Saturn

Uranus

Neptune

♀
☿

♂
♃
♄
♅
♆

♀

Pluto



  

Mercury

Venus

Earth

Mars

Jupiter

Saturn

Uranus

Neptune

♀
☿

♂
♃
♄
♅
♆

♀



  

Mercury

Venus

Earth

Mars

Jupiter

Saturn

Uranus

Neptune

♀
☿

♂
♃
♄
♅
♆

♀



  

Mercury

Venus

Earth

Mars

Jupiter

Saturn

Uranus

Neptune

♀
☿

♂
♃
♄
♅
♆

♀



  

Mercury

Venus

Earth

Mars

Jupiter

Saturn

Uranus

Neptune

♀
☿

♂
♃
♄
♅
♆

♀



  

Injective Functions
● A function f : A → B is called injective (or one-to-one) 

when the following statement is true about f:
∀a₁ ∈ A. ∀a₂ ∈ A. (a₁ ≠ a₂ → f(a₁) ≠ f(a₂))

(“If the inputs are different, the outputs are different.”)
● The following first-order definition is equivalent (why?) 

and is often useful in proofs.
∀a₁ ∈ A. ∀a₂ ∈ A. (f(a₁) = f(a₂) → a₁ = a₂)

(“If the outputs are the same, the inputs are the same.”)
● A function with this property is called an injection.
● How does this compare to our second rule for functions?



  

Injections
● Let  be the set of all CS103 students. Which of 🧑‍🤝‍🧑

the following are injective?
● f :  → ℕ where 🧑‍🤝‍🧑 f(x) is x’s Stanford ID number.
● g :  → , where  is the set of all continents and 🧑‍🤝‍🧑 🌎 🌎

g(x) is x’s continent of birth.
● h :  → , where  is the set of all given (first) 🧑‍🤝‍🧑 💬 💬

names, where h(x) is x’s given (first) name.

f : A → B is injective when either equivalent statement is true:
  

∀x₁ ∈ A. ∀x₂ ∈ A. (x₁ ≠ x₂ → f(x₁) ≠ f(x₂))
∀x₁ ∈ A. ∀x₂ ∈ A. (f(x₁) = f(x₂) → x₁ = x₂)

Answer at

https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev
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Proofs on Injections



  

Injective Functions

Theorem: Let f : ℕ → ℕ be defined as f(n) = 2n + 7.
Then f is injective.

Proof: Consider any n₀, n₁ ∈ ℕ where f(n₀) = f(n₁). We
will prove that n₀ = n₁.
Since f(n₀) = f(n₁), we see that

2n₀ + 7 = 2n₁ + 7.
This in turn means that

2n₀ = 2n₁,
so n₀ = n₁, as required. ■ 
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What does it mean for the function f to be 
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Therefore, we'll pick arbitrary n₀, n₁ ∈ ℕ 
where f(n₀) = f(n₁), then prove that n₀ = n₁.
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This in turn means that

2n₁ = 2n₂,
so n₁ = n₂, as required. ■ 

Good exercise: Repeat this 
proof using the other 
definition of injectivity!
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This proof contains
no first-order logic
syntax (quantifiers,

connectives, etc.). It’s
written in plain English,

just as usual.



  

To prove that
this is true…

∀x. A

∃x. A

¬A

Have the reader pick an
arbitrary x. We then prove A is

true for that choice of x.
Find an x where A is true.

Then prove that A is true for
that specific choice of x.

Simplify the negation, then
consult this table on the result.



  

To prove that
this is true…

∀x. A

∃x. A

A → B

¬A

Have the reader pick an
arbitrary x. We then prove A is

true for that choice of x.
Find an x where A is true.

Then prove that A is true for
that specific choice of x.

Assume A is true, then
prove B is true.

Simplify the negation, then
consult this table on the result.
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Proof: We will prove that there exist integers x₀ and x₁
such that x₀ ≠ x₁, but f(x₀) = f(x₁).
Let x₀ = -1 and x₁ = +1. Then

f(x₀) = f(-1) = (-1)4 = 1
and

f(x₁) = f(1) = 14 = 1,
so f(x₀) = f(x₁) even though x₀ ≠ x₁, as required. ■     



  

Injective Functions

Theorem: Let f : ℤ → ℕ be defined as f(x) = x4. Then f
is not injective.

Proof: We will prove that there exist integers x₀ and x₁
such that x₀ ≠ x₁, but f(x₀) = f(x₁).
Let x₀ = -1 and x₁ = +1. Then

f(x₀) = f(-1) = (-1)4 = 1
and

f(x₁) = f(1) = 14 = 1,
so f(x₀) = f(x₁) even though x₀ ≠ x₁, as required. ■     



  

Injective Functions

Theorem: Let f : ℤ → ℕ be defined as f(x) = x4. Then f
is not injective.

Proof: We will prove that there exist integers x₀ and x₁
such that x₀ ≠ x₁, but f(x₀) = f(x₁).
 Let x₀ = -1 and x₁ = +1. Then

f(x₀) = f(-1) = (-1)4 = 1
and

f(x₁) = f(1) = 14 = 1,
so f(x₀) = f(x₁) even though x₀ ≠ x₁, as required. ■     
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∃x₁ ∈ ℤ. ¬∀x₂ ∈ ℤ. (x₁ ≠ x₂ → f(x₁) ≠ f(x₂))
∃x₁ ∈ ℤ. ∃x₂ ∈ ℤ. ¬(x₁ ≠ x₂ → f(x₁) ≠ f(x₂))
∃x₁ ∈ ℤ. ∃x₂ ∈ ℤ. (x₁ ≠ x₂ ∧ ¬(f(x₁) ≠ f(x₂)))
∃x₁ ∈ ℤ. ∃x₂ ∈ ℤ. (x₁ ≠ x₂ ∧ f(x₁) = f(x₂))

  

Therefore, we need to find x₁, x₂ ∈ ℤ such that x₁ ≠ x₂, but f(x₁) = f(x₂). 
Can we do that?
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This proof contains
no first-order logic
syntax (quantifiers,

connectives, etc.). It’s
written in plain English,

just as usual.



  

To prove that
this is true…

∀x. A

∃x. A

A → B

¬A

Have the reader pick an
arbitrary x. We then prove A is

true for that choice of x.
Find an x where A is true.

Then prove that A is true for
that specific choice of x.

Assume A is true, then
prove B is true.

Simplify the negation, then
consult this table on the result.



  

To prove that
this is true…

∀x. A

∃x. A

A → B

A ∧ B

¬A

Have the reader pick an
arbitrary x. We then prove A is

true for that choice of x.
Find an x where A is true.

Then prove that A is true for
that specific choice of x.

Assume A is true, then
prove B is true.

Prove A. Also prove B.

Simplify the negation, then
consult this table on the result.



  

To prove that
this is true…

∀x. A

∃x. A

A → B

A ∧ B

A ∨ B

A ↔ B

¬A

Have the reader pick an
arbitrary x. We then prove A is

true for that choice of x.
Find an x where A is true.

Then prove that A is true for
that specific choice of x.

Assume A is true, then
prove B is true.

Prove A. Also prove B.

Either prove ¬A → B or
prove ¬B → A.

(Why does this work?)

Prove A → B and B → A.

Simplify the negation, then
consult this table on the result.



  

Two More Classes of Functions
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Mt. Shasta

Crater Lake

Mt. McLoughlin

Mt. Hood

Mt. St. Helens

Mt. Baker

Mt. Rainier

Oregon

WashingtonWashington

California



  

Surjective Functions
● A function f : A → B is called surjective (or 

onto) when this first-order logic statement is 
true about f:

∀b ∈ B. ∃a ∈ A. f(a) = b
(“For every possible output,

there's an input that produces it.”)
● A function with this property is called a 

surjection.
● How does this compare to our first rule of 

functions?



  

Shard 1

Shard 2

Shard 3

Shard 4

Shard 5

cocorosie@gmail.com

woodkid@gmail.com

sigur.ros@gmail.com

alt.j@gmail.com

the.xx@gmail.com



  

Check the appendix for
sample proofs involving

surjections.



  

Injections and Surjections
● An injective function associates at most 

one element of the domain with each 
element of the codomain.

● A surjective function associates at least 
one element of the domain with each 
element of the codomain.

● What about functions that associate 
exactly one element of the domain with 
each element of the codomain?



  

Bijections
● A bijection is a function that is both 

injective and surjective.
● Intuitively, if f : A → B is a bijection, then 

f represents a way of pairing off elements 
of A and elements of B.

🌳

👪

❤

爱

树

家



  

Bijections
● Which of the following are bijections?

● f : ℝ → ℝ defined as f(x) = x. Yep!
● f : ℤ → ℝ defined as f(x) = x. Nope!
● f : ℝ → ℝ defined as f(x) = 2x + 1. Yep!
● f : ℤ → ℤ defined as f(x) = 2x + 1. Nope!

A bijection is a function that is
both injective and surjective.
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Bijections
● Which of the following are bijections?

● f : ℝ → ℝ defined as f(x) = x. Yep!
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● f : ℝ → ℝ defined as f(x) = 2x + 1. Yep!
● f : ℤ → ℤ defined as f(x) = 2x + 1. Nope!

A bijection is a function that is
both injective and surjective.



  

Next Time
● First-Order Assumptions

● The difference between assuming something 
is true and proving something is true.

● Connecting Function Types
● Involutions, injections, and surjections are 

related to one another. How?
● Function Composition

● Sequencing functions together.



  

Appendix: More Proofs on Functions



  

Proof 1: Proving a function is surjective.



  

Surjective Functions
Theorem: Let f : ℝ → ℝ be defined as f(x) = 2x. Then

f(x) is surjective.
Proof: Consider any y ∈ ℝ. We will prove that there is a

choice of x ∈ ℝ such that f(x) = y.
Let x = 2y. Then we see that

f(x) = f(2y) = 2y / 2 = y.
So f(x) = y, as required. ■



  

Surjective Functions
Theorem: Let f : ℝ → ℝ be defined as f(x) = 2x. Then

f(x) is surjective.
Proof: Consider any y ∈ ℝ. We will prove that there is a

choice of x ∈ ℝ such that f(x) = y.
Let x = 2y. Then we see that

f(x) = f(2y) = 2y / 2 = y.
So f(x) = y, as required. ■



  

Surjective Functions
Theorem: Let f : ℝ → ℝ be defined as f(x) = 2x. Then

f(x) is surjective.
Proof: Consider any y ∈ ℝ. We will prove that there is a

choice of x ∈ ℝ such that f(x) = y.
Let x = 2y. Then we see that

f(x) = f(2y) = 2y / 2 = y.
So f(x) = y, as required. ■

What does it mean for f to be surjective?

∀y ∈ ℝ. ∃x ∈ ℝ. f(x) = y

Therefore, we'll choose an arbitrary y ∈ ℝ, 
then prove that there is some x ∈ ℝ where 
f(x) = y.
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f(x) = f(y / 2) = 2y / 2 = y.
So f(x) = y, as required. ■
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This proof contains
no first-order logic
syntax (quantifiers,

connectives, etc.). It’s
written in plain English,

just as usual.



  

Proof 2: Proving a function is 
not surjective.



  

Surjective Functions
Theorem: Let g : ℕ → ℕ be defined as g(n) = 2n. Then

g(x) is not surjective.
Proof: We will show there is a natural number n such that

g(m) ≠ n for any m ∈ ℕ.
Let n = 137. We must show that g(m) ≠ 137 for any 
m ∈ ℕ. To see this, consider some m ∈ ℕ. Then we see 
that g(m) = 2m is even, while 137 is odd. Therefore, we 
have g(m) ≠ 137, as required. ■
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What does it mean for g to be surjective?

∀n ∈ ℕ. ∃m ∈ ℕ. g(m) = n

What is the negation of the above statement?

¬∀n ∈ ℕ. ∃m ∈ ℕ. g(m) = n
∃n ∈ ℕ. ¬∃m ∈ ℕ. g(m) = n
∃n ∈ ℕ. ∀m ∈ ℕ. g(m) ≠ n

Therefore, we need to find a natural number n where, 
regardless of which m we pick, we have g(m) ≠ n.
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∃n ∈ ℕ. ∀m ∈ ℕ. g(m) ≠ n.
 

We just made our choice of n. 
Therefore, we need to prove

 

∀m ∈ ℕ. g(m) ≠ n.
 

We’ll therefore pick an arbitrary 
m ∈ ℕ, then prove that g(m) ≠ n.
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no first-order logic
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